Inference of Boolean networks under constraint on bidirectional gene relationships.
نویسندگان
چکیده
The coefficient of determination (CoD) has been used to infer Boolean networks (BNs) from steady-state data, in particular, to estimate the constituent BNs for a probabilistic BN. The advantage of the CoD method over design methods that emphasise graph topology or attractor structure is that the CoD produces a network based on strong predictive relationships between target genes and their predictor (parent) genes. The disadvantage is that spurious attractor cycles appear in the inferred network, so that there is poor inference relative to the attractor structure, that is, relative to the steady-state behaviour of the network. Given steady-state data, there should not be a significant amount of steady-state probability mass in the inferred network lying outside the mass of the data distribution; however, the existence of spurious attractor cycles creates a significant amount of steady-state probability mass not accounted for by the data. Using steady-state data hampers design because the lack of temporal data causes CoD design to suffer from a lack of directionality with regard to prediction. This results in spurious bidirectional relationships among genes in which two genes are among the predictors for each other, when actually only one of them should be a predictor of the other, thereby creating a spurious attractor cycle. This paper characterises the manner in which bidirectional relationships affect the attractor structure of a BN. Given this characterisation, the authors propose a constrained CoD inference algorithm that outperforms unconstrained CoD inference in avoiding the creation of spurious non-singleton attractor. Algorithm performances are compared using a melanoma-based network.
منابع مشابه
Constraint-based analysis of gene interactions using restricted boolean networks and time-series data
BACKGROUND A popular model for gene regulatory networks is the Boolean network model. In this paper, we propose an algorithm to perform an analysis of gene regulatory interactions using the Boolean network model and time-series data. Actually, the Boolean network is restricted in the sense that only a subset of all possible Boolean functions are considered. We explore some mathematical properti...
متن کاملInference of Biological Pathway from Gene Expression Profiles by Time Delay Boolean Networks
One great challenge of genomic research is to efficiently and accurately identify complex gene regulatory networks. The development of high-throughput technologies provides numerous experimental data such as DNA sequences, protein sequence, and RNA expression profiles makes it possible to study interactions and regulations among genes or other substance in an organism. However, it is crucial to...
متن کاملRelationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks
A significant amount of attention has recently been focused on modeling of gene regulatory networks. Two frequently used large-scale modeling frameworks are Bayesian networks (BNs) and Boolean networks, the latter one being a special case of its recent stochastic extension, probabilistic Boolean networks (PBNs). PBN is a promising model class that generalizes the standard rule-based interaction...
متن کاملFrom Boolean to Probabilistic Boolean Networks as Models of Genetic Regulatory Networks
Mathematical and computational modeling of genetic regulatory networks promises to uncover the fundamental principles governing biological systems in an integrative and holistic manner. It also paves the way toward the development of systematic approaches for effective therapeutic intervention in disease. The central theme in this paper is the Boolean formalism as a building block for modeling ...
متن کاملInference of Genetic Networks from Expression Profile by Graphical Gaussian Modeling
Recent advance of DNA microarray technologies has made it possible to measure the expression levels of thousands of genes simultaneously, under different conditions. Elucidating patterns from the expression profile would provide us great insight into gene function and regulatory systems. For the purpose, several groups have developed the methods for clustering genes on the microarray. Here. clu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IET systems biology
دوره 3 3 شماره
صفحات -
تاریخ انتشار 2009